COMPACT QUESTIONS INTEGRATION
EXERCISE -A
1) ∫ dx/(1+ sinx). Tanx- sex+ c
2) ∫ (tanx - x)tan²x. 1/2 (tanx - x)²+ c
3) State formula for integration by parts.
4) ∫ dx/(sin²x cos²x). tanx- cotx +c
5) Integrate logx w.r.to x. xlogx - x+ c
EXERCISE -B
1) The value of ∫ dx/(sinx cosx) is
a) log|cotx| b) log|tanx| c) log|secx| d) log|sinx|
2) The value of ∫ (sinx+ cosx)/√(1+ sin2x) dx is
a) sinx b) x c) cosx d) tanx
EXERCISE - C
1) ∫ sin2x/(sin3xsin5x) dx. 1/3 log|sin3x| - 1/5 log|sin5x|+ c
2) ∫ dx/{sin(x -α) sin(x -β)}. 1/sin(x -α) log|sin(x -α) sin(x-β)|+ c
3) ∫ (sinx + cosx)/sin(x -α) dx. (Cosα - sinα)(x -α) + cos + sinα) log|sin(x -α)|+ c
4) ∫ tanx tan2x tan3x dx. 1/3 log|sec3x| -1/2 log|sec2x| - log|secx| + c
5) ∫ √tanx/(sinxcosx) dx. 2√tanx + c
6) ∫ dx/(√(2ax - x²) (x> a). sin⁻{(x- a)/a + c
7) ∫ dx/{√(x+1) + ³√(x+1)}. 2√(x+1) - 3 ³√(x+1)+ 6 ⁶√(x+1) - 6 log|⁶√(x+1)+1|+ c
8) ∫ x²/{(x²+1)(x -1)²} dx. 1/2 [log|x -1| - 1/(x -1) - 1/2 log(x²+1)] + c
9) ∫ d(x²-1)/{x√(2- x²)}. sin⁻¹ √(x²-1)+ c
10) ∫ dx/(eˣ + e⁻ˣ). tan⁻¹eˣ + c
11) ∫ (x²+ sin²x)sec²x/(1+ x²) dx. tanx - tan⁻x+ c
12) ∫ (x + sinx)/(1+ cosx) dx. x tan(x/2)+ c
13) ∫ xeˣ/(x+1)²dx. eˣ/(x+1) + c
14) ∫ {log(1+ x²)}/(1+ x)² dx. (1/2 - 1/(x+1) log(1+ x²)+ tan⁻¹x - log|1+ x| + c
15) ∫ sin⁻¹√{x/(x+ a)} dx. (x+ a)ta(x/a) - √(ax) + c
16) ∫ sinx/(sinx + cosx) dx. 1.2 [x - log|sinx + cosx|] + c
17) ∫ dx/{2x-7)√(x²- 7x+12)}. Sec⁻(2x -7)+ c
18) ∫ sin(logx) dx. x/2[sin(logx)- cos(logx)]+ c
19) ∫ dx/{2x - x²)√(2x - x²)}. (x-1)/√(2x - x²)+ c
20) ∫ dx/{(x+ a)(x²+ a²)}. 1/2a²[log|x + a| - 1/2 log(x²+ a²)+ tan⁻¹(x/a) ]+ c
EXERCISE - D
1) ∫ √(1+ cosec2x) dx. 2sin⁻¹(sinx/2 - cosx/2)+ c
2) ∫ (cosx + x sinx)/(x(x+ cosx)) dx. Log(x/(x + cosx)+ c
3) ∫ dx/(cos⁴x - cos²x sin²x + sin⁴x). tan⁻¹(tanx - cotx)+ c
4) ∫ ₑtan⁻¹x {(1+ x + x²)/(1+ x²)} dx. ₑtan⁻¹x + c
5) ∫ dx/(sina + sinx), a being constant. 1/cosa [log|sin(1/2)(x+a)| - log|cos(1/2)(x - a)|] + c
6) ∫ (1- x²)/(1+ x²) . dx/√(1+ x²+ x⁴). cosec⁻¹(x + 1/x)+ c
7) ∫ (x -1)/(x+1) dx/√(x + x²+ x³). 2tan⁻¹√(x+ 1/x +1) + c.
8) ∫ dx/√{sin³x sin(x + a)}. - 2 cosec a√(sin(x+ a)cosec2x)+ c
9) ∫ eˢᶦⁿˣ(x cosx - secxtanx) dx. (x - secx) eˢᶦⁿˣ+ c
10) ∫ (cosx - sinx)/√sin2x dx. log|sinx + cosx+ √sin2x| + c
11) ∫ √tanx dx. 1/√2 sin⁻¹ (sinx - cosx) - 1/√2 log|sinx + cosx + √sin2x| + c
12) Prove ∫ x²dx/(x sinx + cosx)² = (sinx - x cosx)/(xsinx + cosx)+ c
Comments
Post a Comment