COMPACT QUESTIONS (DIFFERENTIATION)
EXERCISE -1
1) If y= sin⁻¹x + sin⁻¹√(1- x²), find the value of dy/dx. 02) If y= log₁₀x , find x dy/dx. log₁₀e
3) Differentiate sin⁻¹x w.r.t.cos⁻¹√(1- x²). 1
4) dy/dx of tan⁻¹{2x/(1- x²)} w.r.t sin⁻¹ {2x/(1+ x²)}. 1
5) Find the differential coefficient of x¹⁰ w r t. log₁₀x. 10logₑ10 . x¹⁰
6) Find points on the curve y= x + 1/x where dy/dx =0. (1,2)&(-1,-2)
7) If y= tan⁻¹{sinx/(1- cosx)}, find dy/dx. -1/2
8) find x⁴ w.r.t.x². 2x²
EXERCISE -2
1) The differential coefficient of log (tan x) is
A) Secx B) cot x C) 2sec2x D) 2cosec2x
2) If y= tan⁻¹{cosx/(1+ sinx)}, then dy/dx
A) -1/2 B) -1 C) 1 D) 1/2
3) If y= sec⁻¹[(x+1)/(x -1)] + sin⁻¹[(x-1)/(x +1)] then dy/dx is
A) 1 B) (x-1)/(x +1) C) 0 D) (x+1)/(x -1)
4) The derivative of sin(cos⁻¹x) w r.t. cos⁻¹x is
A) cosx B) - x C) x D) Sinx
5) The derivative of xˣ w r.t. x log x is
A) x log x B) xˣ C) x⁻ˣ D) none
6) The value of d/dx (sin x°) at x= 60, is
A) 0 B) 1/2 C) √3/2 D) none
7) IF y= x + x²/2 + x³/3 + x⁴/4 + ..... to ∞ then dy/dx equal
A) y B) eʸ C) e ⁻ʸ D) none
8) derivative of f(logx) w.r.t.x, where f(x)= log x, is
A) x/logx B) (logx)/x C) 1/(x logx) D) none
9) dy/dx of tan⁻¹{cosx - sinx)/(sinx + cosx) is
A) -2 B) 0 C) 1 D) none
10) dy/dx of f(x)= x |x| is
A) 2x B) -2x C) 2|x | D) none
11) If f(x) be an even function, then f'(0) is equal to
A) -1 B) 0 C) 1 D) none
EXERCISE -3
1) If y= 2x tan⁻¹x - logₑ(1+ x²), find dy/dx. 2 tan⁻¹x
2) If tan²y = (1+ cos2x)/(1- cos2x), Find dy/dx. ±1
3) If y= log(1+ sin2x) + 2log sec(π/4 - x), show that dy/dx =0.
4) If log(xy)= x²+ y², find dy/dx when x= a, y = a. -1
5) If x²+ y²= t - 1/t and x⁴ + y⁴ = t²+ 1/t², then show that x³y dy/dx = 1.
6) If xʸ = eˣ⁻ʸ , then show that dy/dx = log x/(1+ logx)² = log x/(log ex)².
7) If y= ₑsin⁻¹x and z= ₑcos⁻¹x , show that dy/dx = constant.
8) If y=tan⁻¹x ⁿ₀₁₂₃ₙⁿ₁₂₃ₙⁿ⁻¹₀₁₂ₙⁿ ₁₂₃ⁿₙʸˣᵇ ᵃ⁺ᵇ⁺²ˣ ₓ ˢᶦⁿˣ ˣᶜᵒˢˣ ˢᶦⁿˣ ⁻¹ₙₙ ₙ ₙ₋₁ₑˣ ʸˣ
Miscellaneous -
1) If y= f{f(x)}, f(0)=0 and f'(0)=2, find y'(0). 4
2) Define differential coefficient of f(x) at x = a.
3) Given y = x³- 8x +7 and x = f(t). If x = 3, where t= 0 and df/dt =2, find dy/dt when t= 0. 38
4) Show that the derivative of an even function is always an odd function.
5) If f(x)= logₑ x, g(x)= x², h(x)= eˣ and F(x) = f{g(h(x))}, then dF/dx is
A) 2 B) 2x C) x² D) 0
6)
Comments
Post a Comment