COMPACT QUESTIONS (DIFFERENTIATION) -2
EXERCISE-A
1) sin⁻¹x+ sin⁻¹√(1- x²). 0
2) sin⁻¹x w.r.t. cos⁻¹√(1- x²). 1
3) tan⁻¹{2x/(1- x²)} w.r.t sin⁻¹{2x/(1+ x²)}. 1
4) x¹⁰ w.r.t. log₁₀x. 10logₑx. x¹⁰
5) tan⁻¹{sinx/(1- cosx)} -1/2
6) The differential coefficient of log(tanx) is
a) Secx b) cotx c) 2sec2x d) 2 cosec2x
7) tan⁻¹{cosx/(1+ sinx)}.
a) -1/2 b) -1 c) 1 d) 1/2
8) sec⁻¹ {(x+1)/(x-1)} + sin⁻¹{(x -1)/(x+1)}
a) 1 b) (x-1)/(x+1) c) 0 d) (x+1)/(x-1)
9) sin(cos⁻¹x) w.r.t. cos⁻¹x is
a) cosx b) - x c) x d) sin x
10) xˣ w.r.t. x logx
a) x logx b) xˣ c) x⁻ˣ d) none
11) sinx° at x=60
a) 0 b) 1/2 c) √3/2 d) none
12) x+ x²/2 + x³/3 + x⁴/4+ ......∞,
a) y b) eʸ c) e⁻ʸ d) none
13) The function y= cos⁻¹(sinx) is not differentiable at
a) x=π b) x=2π c) x=π/2 d) none
14) f(logx) w.r.t.x where f(x)= logx
a) x/logx b) logx/x c) 1/(x logx) d) none
15) tan⁻¹{(cosx - sinx)/(sinx + cosx)
a) -1 b) 0 c) 1 d) none
16) x|x|
a) 2x b) -2x c) 2|x| d) none
17) If f(x) be an even function, then f'(0) is
a) -1 b) 0 c) 1 d) none
18) If f(x)= logₑx, g(x)= x², h(x)= eˣ and F(x)= f{g(x)}, then dF/dx is equal to
a) 2 b) 2x c) x² d) 0
19) 2x tan⁻¹x - logₑ(1+ x²). 2tan⁻¹x
20) tan²y = (1+ cos2x)/(1- cos2x). ±1
21) tan⁻¹[{√(1+ x²) -1}/x] w.r.t. tan⁻¹x. 1/2
22) log √(x²+ y²)= tan⁻¹(y/x). (x+ y)/(x - y)
23) xʸ + yˣ = aᵇ. -(yxʸ⁻¹ + yˣlogy)/(xʸ logx + xyˣ⁻¹)
24) xˢᶦⁿˣ + log sinxˣ. xˢᶦⁿˣ[sinx/x + cosx log x]+ cot(xˣ). xˣ(1+ logx)
25) sin⁻¹{x². √(1- x) - √x. √(2- x⁴)}. 2x/√(1- x⁴) - 1/2√(x - x²).
26) tan⁻¹[(tanx + Secx -1)/(tanx - Secx +1)]. 1/2
27) y= cot⁻¹{√(1+ t²) - t}; x= tan⁻¹{(1+t)/(1- t)}. -1/2
28) y= (sinx)ᶜᵒˢˣ + (cosx)ˢᶦⁿˣ. (sinx)ᶜᵒˢˣ(cosx + cot x - sinx log sinx)+ (cosx)ˢᶦⁿˣ(cosx log cosx - sinx tanx)
29) ₓsin⁻¹x w.r.t. sin⁻¹x. ₓsin⁻¹x{logx + √(1- x²)/x . sin⁻¹x}
30) ₑxˣ + √(sin√x). ₑxˣ .xˣ(1+ logx) + cos√x/4√(x sun√x).
31) xʸ. yˣ = x+ y. y/x [x -y(x+ y)- x(x+ y)logy]/[y(x+ y)logx + x(x + y)- y]
32) y= ₓyˣ. {y logy(1+ x logx logy}/{x logx(1- x logy)}.
33) y= b tan⁻¹{(x/a) + tan⁻¹(y/x)}. b/a. {(x²+ y²- ay)/((x²+y²)sec²(y/b) - bx)}.
EXERCISE-B
1) If y= log₁₀x, find the value of x dy/dx. log₁₀e
2) If y=f{f(x)}, f(0)=0 and f'(0)=2, find y'(0). 4
3) Given y= x³- 8x+7 and x= f(t). If x=3, when t=0 and df/dt=2, find dy/dx when t=0. 38
4) Find points on the curve y= x + 1/x where dy/dx=0. (1,2) and (-1,-2)
5) Find sin²x at x=π/4. 1
6) If f(x)= (x -1)/(2x²-7x +5), when x≠1,
=1/3, when x=1,
Then find the value of f'(1). 2/9
EXERCISE-C
Prove:
1) If x³+ y³- 3axy=0, show dy/dx= (ay - x²)/(y²- ax).
2) Show that the derivative of an even function is always an odd function.
3) If log(1+ sin2x)+ 2log sec(π/4- x) then dy/dx=0
4) If x²+ y²= t - 1/t and x⁴+ y⁴= t²+ 1/t² then x³y dy/dx = 1.
5) If xʸ = eˣ⁻ʸ, then dy/dx= logx/(1+ logx)² = logx/(log ex)²
6) If ₑsin⁻¹x and z= ₑ- cos⁻¹x then dy/dz = constant.
7) y= tan⁻¹{(a cosx- b Sinx)/(bcosx+ a Sinx)} show dy/dx=-1
8) y= cos⁻¹{(2 cosx+ 3sinx)/√13} show dy/dx= 1.
9) f(x)= {(a+ x)/(b+ x)}ᵃ⁺ᵇ⁺²ˣ, show f'(0)= [log(a²b²) + (b²- a²)/ab] (a/b)ᵃ⁺ᵇ.
10) x= tan(y/2) + log tan(y/2) - 2 log(1+ tan(y/2)), show dy/dx= 1/2 siny(1+ cosy + siny)
11) y = cos⁻¹(8x⁴- 8x²+1), show dy/dx + 4/√(1- x²)= 0.
12) If y= m cos2t(1- cos2t) and x= K sin2t(1+ cos2t), show cot t dy/dx = m/K
13) If siny = x sin(a+ y), show dy/dx = (sin²(a+ y))/sina= sina/(1- 2x cosa + x²).
14) If x - √(a²- y²)= a log{y/(a+√(a²- y²)) , show dy/dx= y/√(a²- y²).
15) If y= log{(1+ x)/(1- x)} + 1/2 log{(1+ x+ x²)/(1- x + x²)} + √3 tan⁻¹{x√3/(1- x²), then show dy/dx= 6/(1- x⁶).
16) If y= x²/2 + x√(x²+1)/2 + log{√x + √(x²+1)}, show 2y= x dy/dx + log dy/dx.
17) If √(1- x²)+ √(1- y²)= a(x - y), show dy/dx= √{(1-y²)/(1- x²)}.
18) {√(1+ x²) - √(1- x²)}/{√(1+ x²)+ √(1- x²)} w.r.t. √(1- x⁴) is show {√(1- x⁴) -1}/x⁶
19) If logx = tan⁻¹{(y -x²)/x²}, show dy/dx= 2x(1+ tan(logx))( x sec²(logx)).
20) If y = log{a+ b tan(x/2)}/{a - b tan(x/2) & z= 1/{a² cos²(x/2) - b²sin²(x/2)}, show dy/dx = ab/(a²+ b²) . (a² cot(x/2) - b² tan(x/2)).
21) If y= 1+ a/(x - a) + bx/{(x-a)(x - b)} + cx²/{(x -a)(x - b)(x - c), show dy/dx= y/x {a/(a - x) + b/(b - x) + c/(c - x)}.
22) If 2 {(a²- b²)/(a²+ b²)} . x{pᵖ√x/(p+1) + qᑫ√x/(q+1), then show dy/dx= {(a+ b)/(a- b)}⁽ᑫ⁺ᵖ⁾/⁽ᑫ⁻ᵖ⁾, when x= {(a+ b)/(a- b)}²ᵖᑫ/⁽ᑫ⁻ᵖ⁾
23) If (m - n cosy)(m+ n cosx)= m² - n², show dy/dx= √(m²- n²)/(m+ n cosx).
Comments
Post a Comment